
Sorting, Searching, & Aligning
Michael Schatz

QB/Bioinformatics Lecture 1
Quantitative Biology 2014

Cells & DNA

Your specific nucleotide
sequence encodes the

genetic program for your
cells and ultimately your

traits

Each cell of your body
contains an exact copy
of your 3 billion base

pair genome.

Short Read Applications
•  Genotyping: Identify Variations

•  *-seq: Classify & measure significant peaks

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT

TCGGAAATT
CGGAAATTT
CGGAAATTT

GGAAATTTG

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
ATAC… …CC

 GAAATTTGC

Searching for GATTACA
•  Where is GATTACA in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 1

•  Strategy 1: Brute Force

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match at offset 2

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A …

No match at offset 3…

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

•  Brute Force:
–  At every possible offset in the genome:

•  Do all of the characters of the query match?

•  Analysis
–  Simple, easy to understand
–  Genome length = n [3B]
–  Query length = m [7]
–  Comparisons: (n-m+1) * m [21B]

•  Overall runtime: O(nm)
 [How long would it take if we double the genome size, read length?]

 [How long would it take if we double both?]

Expected Occurrences
 The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT, …
–  1 in 16,384 should be GATTACA
–  E=n/(4m) [183,105 expected occurrences]

 [How long do the reads need to be for a significant match?]

0 5 10 15 20 25 30

0e
+0

0
2e

+0
8

4e
+0

8
6e

+0
8

Evalue and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

0 5 10 15 20 25 30

1e
−0

9
1e
−0

5
1e
−0

1
1e

+0
3

1e
+0

7

E−value and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

Brute Force Reflections
 Why check every position?

–  GATTACA can't possibly start at position 15 [WHY?]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

–  Improve runtime to O(n + m) [3B + 7]
•  If we double both, it just takes twice as long
•  Knuth-Morris-Pratt, 1977
•  Boyer-Moyer, 1977, 1991

–  For one-off scans, this is the best we can do (optimal performance)
•  We have to read every character of the genome, and every character of the query
•  For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book
•  What if we need to check many queries?

•  We don't need to check every page of the phone book to find 'Schatz'
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book

without any loss in accuracy

•  Sorting the genome: Suffix Array (Manber & Myers, 1991)

–  Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

Hi

Lo

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9;

Lo
Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
•  Middle = Suffix[9] = GATTACA…

 => Match at position 2!

Lo
Hi

Binary Search Analysis
•  Binary Search

 Initialize search range to entire list
 mid = (hi+lo)/2; middle = suffix[mid]
 if query matches middle: done
 else if query < middle: pick low range
 else if query > middle: pick hi range

 Repeat until done or empty range [WHEN?]

•  Analysis
•  More complicated method
•  How many times do we repeat?

•  How many times can it cut the range in half?
•  Find smallest x such that: n/(2x) ≤ 1; x = lg2(n) [32]

•  Total Runtime: O(m lg n)
•  More complicated, but much faster!
•  Looking up a query loops 32 times instead of 3B

 [How long does it take to search 6B or 24B nucleotides?]

Suffix Array Construction
•  How can we store the suffix array?

 [How many characters are in all suffixes combined?]

S = 1 + 2 + 3 + · · ·+ n =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Pos

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

TGATTACAGATTACC

•  Hopeless to explicitly store 4.5 billion billion characters

•  Instead use implicit representation
•  Keep 1 copy of the genome, and a list of sorted offsets
•  Storing 3 billion offsets fits on a server (12GB)

•  Searching the array is very fast, but it takes time to construct

•  This time will be amortized over many, many searches
•  Run it once "overnight" and save it away for all future queries

Sorting
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[How do you do it?]

6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis
•  Selection Sort (Input: list of n numbers)

 for pos = 1 to n
 // find the smallest element in [pos, n]
 smallest = pos
 for check = pos+1 to n

 if (list[check] < list[smallest]): smallest = check

 // move the smallest element to the front
 tmp = list[smallest]
 list[pos] = list[smallest]
 list[smallest] = tmp

•  Analysis

•  Outer loop: pos = 1 to n
•  Inner loop: check = pos to n
•  Running time: Outer * Inner = O(n2) [4.5 Billion Billion]

[Challenge Questions: Why is this slow? / Can we sort any faster?]

T = n+ (n� 1) + (n� 2) + · · ·+ 3 + 2 + 1 =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Divide and Conquer
•  Selection sort is slow because it rescans the entire list for each element

•  How can we split up the unsorted list into independent ranges?
•  Hint 1: Binary search splits up the problem into 2 independent ranges (hi/lo)
•  Hint 2: Assume we know the median value of a list

n

[How many times can we split a list in half?]

= < > 2 x n/2

= < > = = < > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

QuickSort in Python

list.sort()!
!
!
!
!
!

•  The goal of software engineering is to build libraries of
correct reusable functions that implement higher level
ideas
–  Build complex software out of simple components
–  Software tends to be 90% plumbing, 10% research
–  You still need to know how they work

•  Python requires an explicit representation of the strings

Algorithmic Complexity

0 50 100 150 200

1
10

10
0

10
00

10
00

0

Algorithm Runtimes

n

ru
nt

im
e

2^n
n^2
n log n
n
log(n)

0 50 100 150 200

0
20

00
40

00
60

00
80

00
10

00
0

Algorithm Runtimes

n

ru
nt

im
e

2^n
n^2
n log n
n
log(n)

What is the runtime as a function of the input size?

Break

Algorithmic challenge

How can we combine the speed of a
suffix array (O(lg(n)) or O(|q|)) with the
size of a brute force analysis (n bytes)?

What would such an index look like?

Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

Burrows-Wheeler Transform

•  Reversible permutation of the characters in a text

•  BWT(T) is the index for T

Burrows-Wheeler
Matrix BWM(T)

BWT(T) T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Rank: 2

Rank: 2

LF Property
implicitly encodes
Suffix Array

Burrows-Wheeler Transform

•  Recreating T from BWT(T)
– Start in the first row and apply LF repeatedly,

accumulating predecessors along the way

Original T

[Decode this BWT string: ACTGA$TTA]

BWT Exact Matching
•  LFc(r, c) does the same thing as LF(r) but it

ignores r�s actual final character and
�pretends� it�s c:

Rank: 2 Rank: 2

L

F

LFc(5, g) = 8

g

BWT Exact Matching
•  Start with a range, (top, bot) encompassing all

rows and repeatedly apply LFc:
top = LFc(top, qc); bot = LFc(bot, qc)
qc = the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

[Search for TTA this BWT string: ACTGA$TTA]

Algorithm Overview

3. Evaluate end-to-end match

2. Lookup each segment and prioritize

1. Split read into segments

Algorithms Summary
•  Algorithms choreograph the dance of data inside the machine

•  Algorithms add provable precision to your method
•  A smarter algorithm can solve the same problem with much

less work
•  Sequences are really fundamental to biology, learn the

techniques to analyze them

•  Techniques
•  Binary search: Fast lookup in any sorted list
•  Divide-and-conquer: Split a hard problem into an easier

problem
•  Recursion: Solve a problem using a function of itself
•  Hashing: Storing sets across a huge range of values
•  Indexing: Focus on the search on the important parts

•  Different indexing schemes have different space/time
features

Next Time

•  Friday:

–  HW Review
–  Group Discussion of ENCODE

•  Monday:

–  Dynamic Programming & Alignment applications

•  Tuesday:
–  Graphs & Assembly

•  Thursday:
–  Diversity of modern and ancient humans

•  Friday:
–  Gene Finding + ChromHMM + Review

Thank You!

http://schatzlab.cshl.edu
@mike_schatz

Picking the Median
•  What if we miss the median and do a 90/10 split instead?

n

[How many times can we cut 10% off a list?]

…+ 9in/10i

n/10 + 9n/10 < = >

... + 81n/100 < = >

< = … + 6561n/10000 >

< = > ... + 729n/1000

< = > … + 59049n/100000

< = > … + 531441n/1000000

< = > … + 4782969n/10000000

Randomized Quicksort
•  90/10 split runtime analysis

•  If we randomly pick a pivot, we will get at least a

90/10 split with very high probability
– Everything is okay as long as we always slice off a

fraction of the list

[Challenge Question: What happens if we slice 1 element]

(9/10)

x

n  1

(10/9)

x � n

x � log10/9 n

Find smallest x s.t.

T (n) = n+ T (
n

10
) + T (

9n

10
)

T (n) = n+
n

10
+ T (

n

100
) + T (

9n

100
) +

9n

10
+ T (

9n

100
) + T (

81n

100
)

T (n) = n+ n+ T (
n

100
) + 2T (

9n

100
) + T (

81n

100
)

T (n) =

log10/9(n)X

i=0

n = O(n lg n)

